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Abstract 

The use of “thermal-windowing” methods to decouple molecular motions in polymeric 
materials has recently become very popular by the introduction on the thermal analysis 
market of the automated TSC/RMA spectrometer. The data obtained are collected into a 
relaxation map which shows the several relaxation modes for the internal motions occurring 
at Tg, below Tg and above Tg. A relaxation map is a set of log T (relaxation time) versus 
l/T curves obtained at different polarization temperatures. The decoupling between the 
relaxation modes responsible for internal motion leads to a better understanding of their 
coupling characteristics. At Tg, the Arrhenius lines gather into packs of lines which 
converge to a single point, the compensation point. The coordinates of the compensation 
point are dependent on the actual state of the glass. The thermally stimulated current 
characteristics of PMMA are studied here to demonstrate the power of the analysis 
provided by the TSC/RMA spectrometer when thermal-windowing is used. In particular, 
the experimental results are replotted as the variation of the free energy of activation versus 
temperature for each polarization temperature, Tp, and the values of the free energy, 
enthalpy and entropy of activation are calculated at Tp. Plots of the thermo-kinetic variables 
against Tp, when Tp varies, leads to characteristic results of the relaxation map: Tg is 
characterized by a maximum in the entropy of activation (and also of the enthalpy), and by 
the intercept of two compensation lines, one positive and one negative, as Tg is crossed 
resulting in a “Z structure” for the relaxation lines. It is shown how the Z structure and the 
Z line, which it defines, relate to the corresponding positive and negative compensation 
lines. Finally, a new characterization method to define Tg from the Z structure is intro- 
duced. 

INTRODUCTION 

Several authors have expressed their concern that compensation phe- 
nomena might be the result of a poor characterization of the data, perhaps 
even an artifact [1,2]. Others argue that Bucci and Fieschi’s relaxation 
times [3] should be corrected to reflect a true relaxational behavior [4]. In 
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the following, one assumes that these problems of the definition of the true 
Debye behavior and of the accuracy of the analysis have been addressed 
and solved. The present author believes that the method of analysis of the 
depolarization curve proposed by Lacabanne and collaborators [5-lo], 
which is used in the software of the TSC/RMA spectrometer, ignores all 
concerns which might invalidate the generality of the results disclosed in 
this article. 

The views expressed here are novel, even to those familiar with the 
technology, although the contribution of many authors [1,3,5,11-131 in the 
development of this treatment is discussed below and duly acknowledged. 

All experimental data presented in this article were obtained on a 
PMMA sample of unknown molecular weight, and the characteristics were 
analyzed on a TSC/RMA spectrometer model 41000. 

ARRHENIUS TRANSFORM, RELAXATION MAP AND RELAXATION MAF’ 
ANALYSIS 

Each elementary relaxation curve (depolarization current vs. tempera- 
ture) obtained from thermal-windowing can be transformed mathematically 
into its Arrhenius representation, log T versus l/T, which expresses the 
variation of relaxation time with temperature for that particular isolated 
relaxation mode (Fig. 1). The elementary relaxation time, TV, for a simple 
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Fig. 1. The Arrhenius transform of the elementary relaxation curve. 
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Fig. 2. Relaxation map obtained by transforming all the thermally-windowed depolarization 
recovery curves. 

behavior described by Bucci and Fieschi’s model [3], and calculated accord- 
ing to Lacabanne’s method [lo], can be written as 

Ti(T) = P(T)/J(T) 
J(T) = dP(T)/dT 

(1) 

which can be fitted to an Arrhenius equation 

Ti( T) = Toi exp( AH/kT) 

where 70i is the pre-exponential factor, AH is the activation enthalpy, and 
k is the Boltzmann’s constant. 

“Arrhenius transform” describes the use of eqn. (1) to represent the 
depolarization recovery data, plotted in an Arrhenius system of coordinates 
(Fig. 1). For each polarization temperature Tp, there is an Arrhenius 
transform. A relaxation map is obtained (Fig. 2) by transforming all the 
thermally-windowed depolarization recovery curves, obtained by varying 
T,, into their Arrhenius representation. 

Relaxation map analysis (RMA) tries to correlate the single relaxation 
modes (relaxation time versus temperature) to thermo-kinetic and/or 
other physical variables. 
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THE EYRING TRANSFORM AND THERMO-KINETIC FUNCTIONS 

According to Eyring, the pre-exponential factor in the Arrhenius equa- 
tion is directly related to the entropy of activation of the activated states 
involved [ 141. 

For a given relaxation mode isolated by polarizing at Tp, the relaxation 
time takes the form 

log ri,p = log( Ti)o,p + AGJkT (2) 

with 

AG, = AHp - TAS, (3) 

where the subindex “p” implies that these variables are functions of the 
temperature of polarization. According to Eyring, see ref. 14 

l”g(Ti)ll,p = - log( kT/h) (4) 

Therefore, 

Ti,p = (h/kT) exp( -A&/k) exp( A HJkT) (5) 

where k and h are, respectively, the Boltzmann and Plan&s constants. 
A plot of (log Ti + log T + log(k/h)) versus l/T (an Eyring plot) is a 

useful way to plot the variables because from the slope (AH,/R) and 
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Fig. 3. Relaxation results plotted in the AG vs. T plane. 
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Representation of the Relaxation data 
in the DELTA(G) plane 
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Fig. 4. Relaxation map for the data of Fig. 2 plotted in the AG vs. T plane. 

intercept (-ASP/R) of the best linear fit through the data points, one can 
determine the mean enthalpy and entropy of activation, AH, and AS,. 

In Fig. 3, the relaxation results are represented in a different plane, the 
AG vs. T plane, by calculating the value of AG at each temperature 
according to eqns. (2) and (4) (the temperature is given in ’ C in Fig. 3, add 
273 to shift to the Kelvin temperature scale). Figure 4 is a relaxation map 
for the data of Fig. 2 in the AG vs. T plane. One sees that the influence of 
the temperature of polarization is to raise the value of AG, while the 
influence of temperature during the recovery process is to reduce its value. 
The slope of the spectral lines in Fig. 4 is equal to the entropy of activation, 
and the intercept is the enthalpy. The lines appear to be satisfactorily 
linear. 

COMPENSATION PHENOMENA AND DEGREE OF DISORDER 

When several Arrhenius. lines converge to a single point, this point is 
called a “compensation point”. In general, for amorphous polymers or for 
the amorphous region in semi-crystalline polymers, the behavior at Tg is 
characterized by at least one compensation phenomenon. The Arrhenius or 
the Eyring lines all converge into a single point at T,, near T,. The 
coordinates (T,, log 7,) of the compensation point are important because 
they transcribe the coupling characteristics between the different modes of 
relaxation observed as individual activated processes in the set of converg- 
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ing Arrhenius lines. The coordinates of the compensation point are related 
to fundamental properties of the state of the polymer, as influenced by its 
surroundings. If a structure is “loose”, the contrary of “ordered” or 
“compact”, i.e. when molecular mobility is less hindered by the interactive 
intra-intermolecular surroundings, the entropy of activation is “larger”. 
Conversely, any parameter which acts to “organize” the structure and 
create a tighter environment for the bonds causes a decrease in the entropy 
of activation. So, the activated entropy calculated from the Eyring equa- 
tion, eqn. (51, gives an indication of “the degree of disorder” (DOD) of the 
structure. But the entropy of activation varies with the polarization temper- 
ature, such as shown by the variation of the slope in Fig. 4. One would like 
to be able to define the DOD by a single number, representative of the 
state of the dielectric environment of the bonds. A characteristic feature of 
the compensation phenomenon gives us such an opportunity. 

COMPENSATION SEARCH, Z STRUCTURE AND Z LINE 

One can prove mathematically that a very simple and practical way to 
see whether a set of lines obtained at various Tp’s converge, is to plot the 
intercept against the slope for these lines and to try to draw a straight line 
through the points. This type of analysis is called a “compensation search”. 

The coordinates of the compensation point (Y,, X,) are calculated from 
the slope and intercept of the compensation line, the intercept versus slope 
plot of the Arrhenius transforms. Figure 5 is the compensation line for the 
set of converging Eyring curves corresponding to Fig. 2. In this case, let 
X, = l/T, and Y, = log TV. 

The coordinates of the compensation point are obtained by linear 
regression completed by a simplex to integrate all the points of the Eyring 
lines into the calculation of the best fit for the compensation lines. 
T, = 129.65 ’ C and In T&Eyring) = 28.58. Therefore, log TV = - 0.5 accord- 
ing to eqns. (3). A regressional fit of the 14 individual Arrhenius lines gives 
the entropy, enthalpy and Gibbs free energy of activation, according to 
eqns. (5) and (2) (Figs. 6-8). Table 1 gives the data for the PMMA studied. 
The Gibbs free energy is calculated at T = Tp. Plots of entropy, enthalpy, 
and AGp versus T, are presented in Figs. 6-8, respectively. The compensa- 
tion search for this sample is shown in Figs. 9 and 10. Figure 9 is the 
classical plot, mentioned previously, of intercept versus slope obtained 
from the linear regression of the Arrhenius lines. Figure 10 is an “EE 
plot”, entropy versus enthalpy. It is actually identical to a compensation 
search, as the entropy and enthalpy are calculated from the Eyring formu- 
lation, as expressed earlier (eqn. (5)) 

slope = A HP/k and intercept = - AS,/k (6) 
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Fig. 5. The compensation line for the set of converging Eyring curves corresponding to Fig. 
2. The numbers at the right indicate the polarization temperatures. 

Two important observations can be made: the compensation search 
reveals two compensation lines; and as Tp increases, the points in Fig. 10 
first go upward, then, as AH and AS reach their maximum, fold backward. 

TABLE 1 

Thermokinetics of PMMA 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

TP T, Enthalpy Entropy Gibbs 
(“0 (“0 (kcal) (cal “C-l) (kcal) 

55.0 65.0 30.0154 21.9978 22.8002 
60.0 68.3 29.1053 18.3919 22.9808 
65.0 73.1 32.3068 26.5580 23.3302 
70.0 77.9 34.0809 30.4044 23.6522 
75.0 82.5 36.6546 36.4496 23.9701 
80.0 87.6 38.0073 38.6547 24.3622 
85.0 92.6 42.7078 50.2408 24.7216 
90.0 96.6 52.4668 75.6816 24.9944 
95.0 101.0 62.6732 101.5688 25.2959 

100.0 105.3 87.9523 167.1228 25.6155 
105.0 107.1 86.2465 161.3318 25.2631 
110.0 110.1 57.4247 81.1127 26.3585 
115.0 120.2 48.7469 57.2885 26.5189 
120.0 144.6 56.3012 76.4458 26.2580 
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Entropy vs. Tp 
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Fig. 8. AG, plotted against Tp. 
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Fig. 9. The compensation search plot of intercept against slope. 



100 

Entropy vs. Enthalpy 
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Fig. 10. The compensation search EE plot of enthalpy versus entropy of activation. 

This phenomenon can be symbolized by saying that the two compensa- 
tion lines observed (Fig. 9 or 10) do not have the same “sign”, meaning 
that as Tp increases, consecutive points on the compensation lines either 
follow a pattern towards increasing or decreasing entropy, depending on 
the positive or negative sign of the compensation line. This behavior is 
clearly classical across the glass transition temperature. The intercept 
between the positive and negative compensation lines is used to determine 
with accuracy the value of the glass transition temperature, and the value 
of the entropy and enthalpy of activation at Tg. 

The best linear fits for the lines of Figs. 9 and 10 have been calculated 
and from them, the coordinates of the compensation points. For the 
positive compensation 

T; = 127.96 o C 

log T,’ = -0.95 (7) 

AS; = 2.5176AH; - 55.5718 (8) 

and for the negative compensation 

T,- = 82.38 ’ C 

log 7, = 4.77 (9) 

AS, = 2.8073AH; - 80.3676 (10) 
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Relaxation Map Analysis 
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Fig. 11. The relaxation map drawn on an Arrhenius system of 
structure. 

The value of AGZ and AG; at the corresponding compensation tem- 
peratures T,’ and T;, and the value of entropy and enthalpy at Tg, i.e. at 
the intercept of the positive and negative compensation lines, can now be 
calculated using the equation 

coordinates shows a Z 

AG, = [log T, + log T, + log( k/h)] RT, 

where R is the gas constant (1.987 cal mol-‘). Therefore: 

AGZ = 22.11 kcal mol-’ 

AG; = 28.88 kcal mol-’ 

The intercept of the 2 compensation lines occurs for 

AHg = 85.59 kcal mol-r 

AS, = 159.91 cal OC-l mol-’ 

which correspond to the enthalpy and entropy of activation at Tg. 

(11) 

(12) 

Figure 11 summarizes the situation for an Arrhenius system of coordi- 
nates, and illustrates “a Z structure”. The Arrhenius lines span the 
relaxation map drawing a kind of “Z” when the temperature of polariza- 
tion, T,, varies. If one considers that I have mirrored the l/T temperature 
axis so that T increases to the right (although l/T is plotted), the 
relaxation map across Tg does actually look like a Z. The Z line is the line 
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Fig. 12. The Z structure displayed in the AG plane. 

passing through the two compensation points. Its image in the EE plane 
(Fig.. 10) is the intercept of the two positive and negative compensation 
lines. Its coordinates are given by eqn. (12), and one can calculate the slope 
and intercept of the Z line in Fig. 11 from eqn. (6). Figure 12 displays the Z 
structure in the AG plane. 

DETERMINATION OF Tg AND THE ACTIVATION ENTROPY AND ENTHALPY 
AT Tg 

One observes that the value of the compensation temperatures are 
located on both sides of Tg (102 ’ C), as determined for instance by DSC, or 
by the value of Tp at the maximum of entropy (Fig. 6). One can stipulate, 
for instance, that the temperature of T, corresponds to the medium value 
between the AG, of the positive and negative compensation points; there- 
fore Tg can be calculated from the characteristics of the compensation 
points: 

AG, = (AG,f + AG,-)/2 

AG, = AHp - T,AS, (13) 

With AH8 and AS, as given by eqn. (121, one obtains Tg = 102.64 o C. 
Another possible, preferable, definition of Tg comes from the calculation 

of AG, (AG at T = TJ. Figure 8 shows that AG, is linearly related to T,, 
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and that to a first approximation 

AG,( Tp) = a + bTP 

where a and b are curve-fitting constants determined by regression; for 
many polymeric systems, it is often found that a = 0 and b = 0.0705 kcal 
K-l mol-‘. Tg can be determined as the intercept of the Z line in the AG 
plane, and the AG,(T,) vs. Tp line 

Tg = ( AHp - u)/( AS, + b) 

The result of 101.3’ C for PMMA corresponds well with the temperature 
of maximum entropy, and with the DSC results for this polymer. 

From the expression of the compensation lines formulated in the EE 
plane, eqns. (8) and (lo), one can easily calculate the value of the extrapo- 
lated enthalpy AHY,s when the entropy is zero, and compare that value 
with AHB. According to views expressed in the theory of Gibbs and 
DiMarzio [15], or perhaps in the treatment by Hoffmann et al. [16] of 
compensation phenomena, the ratio A H,/A Ho,s would be representative 
of the number of elementary units moving at Tg. 

From eqn. (8), AH& = 22.07 kcal mol-‘, and from eqn. (lo), AH;, = 
28.63 kcal mol-‘. These values are obviously equal to those calculated for 
AGZ and AG; (eqn. (11)) as AS, = 0 in eqn. (3). On the basis of eqn. (12), 
the number of units moving at Tg would be between 3 and 4. 

DOD NUMBER 

Another interesting parameter seems to be ASpb, i.e. the extrapolated 
value of the entropy of activation for AHp = 0. This is the intercept of the 
compensation lines themselves, eqns. (8) and (10): 

AS:,, = -55.572 cal ’ C-l mole1 

AS;, = - 80.368 cal ‘C-l mall’ (14) 

If these values are multiplied by T, (in K), from eqns. (7) and (9), one 
finds 

T,‘AS;, = -22.290 kcal mall’ 

TJAS,, = -28.573 kcal mall’ 
(15) 

which again, obviously, equal the respective - AG,‘s because A HP is zero 
this time. 

T, can be rewritten thermodynamically 

T, = AH&,/( -AS,,,) (16) 

which is the ratio of an enthalpic to an entropic term, as in the case of a 
first-order thermodynamic transition. One cannot attribute any specific 
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meaning to this equation at this stage. I show in a companion paper that 
the two terms entering eqn. (16) play a role in determining the location of 
the branches of a multi-compensation plot in the EE plane. The ( -AS,,) 
term is as important as AH,,, or T, in the determination of the actual state 
of the polymeric system, and provided two parameters are specified, the 
third can be calculated from eqn. (16). One can choose any one of them, 
say the entropic term (the value of AS at AH = 0) to define the DOD 
number of the material: 

DOD = 100 + AS,,, (17) 

The number 100 is arbitrarily added to AS,, in order to shift all values to 
the positive side. Based on results obtained in the sub-EE plane (not 
presented here, but introduced at another meeting [17], it is suggested that 
a better physical meaning is actually achieved if 72 is used instead of 100 to 
obtain the true atomic entropic term. However, for the moment, one can 
simply consider eqn. (17) as a formula to define the DOD number, nothing 
else. Normally, only the positive compensation line is used to characterize 
the structure with the DOD number. For instance, the DOD for the 
PMMA of Fig. 2 is 44.43. 

I stipulate that the value of (Tz - T,) is also significant in representing 
the internal state of the glass below Tg. The larger (T,f - T,), the less 
“internally stressed” the structure. 

Finally in this section on the compensation phenomena in the EE plane, 
the possible significance of the results will be examined. Rewriting eqn. (2) 
at T and T,, and combining, the compensation phenomenon is often 
described in the literature [3] in the Arrhenius plane 

log(h) = (&A)( l/T - VT,) 

which puts the emphasis on the coordinates of the compensation point. 
How is T, related to Tg? And why is it empirically found that T,’ is often 
located at 23’ C above the Tg of the polymer [6], as characterized by DSC? 
Should one shift the origin of the axes to the point of compensation to 
rescale the data? 

DUALITY AT Z” 

I prefer to emphasize the result differently, and rewrite the compensa- 
tion equation in the AG plane: 

AC, = AHp - TAS, 

A HP = T,( AS, - AS,,,) (18) 

and 

T, = [ AH,,,/( - AS,,,)] = [ &/(As, - Ah)] (19) 
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by analogy, it seems interesting to define ASos,h at Tg by 

(20) 
I have found empirically that ASog,h takes value between -72.0 and 

-68.0 cal o C-’ mol-’ for a large number of polymers tested with this 
formula (T, is measured at the maximum of the entropy vs. Tp plot, or 
calculated using the Z line crossing technique explained previously, and 
AHp and AS, are given by the intercept of the two compensation lines 
(Fig. 10)). Fo r instance, for the PMMA analyzed here with T, equal to 
101.3, one finds ASog,h = -70.5. 

The shifting value of approximately - 70 cal o C- ’ mall ’ seems to play 
a role when determining the intercept of branches of multi-compensation 
lines. 

Our emphasis is therefore on the Z line itself, and the duality which 
exists at Tg: what is happening at T = Tg, which compensation “world” 
prevails (in choosing between the two compensations), is there a structured 
balance of driving forces leading to oscillation, or some sort of chaotic 
behavior with large fluctuation ? Why is the entropy going through a 
maximum at Tg, and should our understanding of the Tg process be 
improved from it? In particular, should we not use the enthalpy, entropy 
and free energy of activation defined from the Z line to compare the TSC 
results with those obtained by other dynamic electrical -thermal analysis 
techniques? 

CONCLUSION 

Based on this study on PMMA, and many similar results obtained for a 
variety of polymers, it seems possible to conclude that relaxation map 
analysis and compensation phenomena can be used to characterize the 
amorphous state of polymers in a manner fundamentally different from 
other traditional thermal analysis instruments. 
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